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EXECUTIVE SUMMARY 

 
The present scientific deliverable is part of the Work Package 2 “Digital signal processing and system 

modelling”, of the ETN project WON “Wideband Optical Networks”, funded under the Horizon 2020 

Marie Skłodowska-Curie scheme Grant Agreement 814276. 

 

This document provides details on the state-of-art receiver-digital signal processing schemes used 

as a tool for fault detection in multi-band transmission systems, also being able to estimate the 

distance-wise and frequency-dependent channel power evolution. Consequently, this receiver can 

estimate the gain spectrum of each amplifier deployed in the optical line system, as well as soft failures 

in the amplifiers, such as gain tilts. Moreover, is presented two transmission scenarios: single channel 

transmission and a more realistic scenario, composed by a WDM transmission comb of 42 channels. 

It is also shown the application of a wavelet denoising anomaly detection, showing good improvement 

regarding accuracy. 
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1. Introduction 

 

The deployment of multi-band transmission (MBT) [1] systems in optical networks has emerged as a 

cost-effective short/mid-term solution in order to cope with the recent growth in network traffic. This 

technology aims to increase the fiber bandwidth used in coherent transmission, from current value of 

4.8 THz (in the C-band) up to approximately 40 THz in single-mode fibers (SMFs) within the low loss 

window. One aspect of the viability of this solution is due to the capability of optical performance 

monitoring (OPM) in transceivers. Recently, a variety of link properties extracted by the receiver-

digital signal processing (Rx-DSP) are shown. As example, the longitudinal power evolution is shown 

in [2] and [3]. In [4] is evaluated the frequency response of bandpass filters and in [5] the span-wise 

chromatic dispersion mapping. The Raman gain is addressed in [6] and the polarization-dependent 

loss profile in [7]. Retrieving the link properties by the Rs-DSP enables the measurement of 

wavelength-dependent and spatially distributed physical characteristics of the optical networks in a 

cost-effective way [8]. This approach can remove the requirement of numerous in-line monitoring 

devices. In this context, this work shows the extension proposed in [3] of an in-situ power profile 

estimator (PPE) to work not only for distance-wise, but also in a wavelength-dependent way for a C+L 

line system of 280 km of SMF. 

 

The results show that is possible to use this Rx-DSP link-tomography to estimate the gain spectrum 

of each erbium-doped fiber amplifier (EDFA) and to detect failures caused by amplifier gain tilt, all 

shown for single channel transmission. Moreover, this work also shows the link tomography results 

presented in [9] for a C+L wavelength division multiplexing (WDM) comb, approaching a more realistic 

optical network transmission scenario. Moreover, it introduces a denoising tool for anomaly detection, 

delivering a more uniform reading of the anomaly signatures. 
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2. C+L single channel link tomography experimental setup, description and results 

 
The experimental testbed is shown on the upper part of Figure 1. The partially disaggregated line 

system is made of a transmitter, consisting of a 4-ch 84 GSa/s digital-to-analog converter (DAC) and 

a C-band optical multi-format transmitter. The wavelengths under test lie within the C- and L-bands, 

generated by two tunable external cavity lasers (ECLs). A 64-GBd DP 16-QAM signal is then 

generated with a 215 random bit sequence and shaped with a root-raised cosine pulse filter with a roll-

off factor of 0.1. The optical line system (OLS) domain consists of 2 spans of 80 km and 2 spans of 

60 km, with three inline amplifiers (ILAs) C+L EDFAS. It is worth noting that at the output of each ILA 

there is a variable optical attenuator (VOA) used to control the total input fiber power, with this value 

known a priori. At the receiver side, the signal is amplified by another C+L EDFA, before reaching the 

coherent receiver. Then, it is digitized by a 200 GS/s real-time oscilloscope (RTO). By tunning the 

ECLs in steps of 2.5 nm, it was able to emulate multiple WDM carriers within the C- and L-bands. 

 

The link tomography scheme is shown on the bottom part of Figure 1. After the RTO, we blindly 

estimate and fully compensate the link-accumulated chromatic dispersion (𝑐𝑡𝑜𝑡) by a chromatic 

dispersion compensator (CDC). Then, a data-aided equalizer (DAEQ) is used for polarization 

demultiplexing before being split into two tributaries, 1 and 2. Tributary 1 consists of a reloading 

𝑐𝑡𝑜𝑡  module, partial CDC of 𝑛 × 𝑐𝑡𝑜𝑡/𝑁𝑠𝑒𝑔 (in which 𝑛 is a integer number varying from 0 to 𝑁𝑠𝑒𝑔, which 

is the total number of link segments), a nonlinear remediator (which compensates for nonlinear phase 

noise due to Kerr effect) and a residual CDC. Tributary 2 is based on a standard DSP chain to recover 

the signal, consisting of a carrier phase recovery (CPR) stage, frequency offset correction (FOC), and 

a decision based on the nearest complex symbol. The correlation between the tributaries produces 

the longitudinal power profile for each wavelength tested. 

 

 
Figure 1: Experimental testbed and DSP scheme used in the link tomography. 

 

 

Using the link tomography described above, we intend to estimate the gain spectra of ILAs 1, 2 and 

3 (which here is a combination of amplifier gain plus VOA) and detect EDFA soft failures (in our case, 

of ILA 1), such as gain tilt.  

 

The estimated spectral power profile is presented in Figure 2 (a), (c) and (e) for ILAs 1, 2 and 3, 

respectively. In Figure 2 (b), (d) and (f) the estimated gain profile (cross-like markers) is compared 

with the optical spectrum analyser (OSA) measurements (circle-like markers). The absolute and mean 
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error is also shown for each case. These results show good agreement, presenting mean errors 

dashed line) of 0.4, 0.5 and 0.6 dB for ILAs 1, 2 and 3, respectively, showing that link tomography 

presents a reliable way to estimate the gain profile of all ILAs with good accuracy.  

 

 
Figure 2: Estimated spectral power profile for ILAs (a) 1, (c) 2 and (e) 3, and estimated gain spectrum, measurements, absolute error 

and mean error for ILA (b) 1, (d) 2 and (f) 3.  

 

In  

Figure 3 (a) the estimated gain profile and measurements for ILA 1 are presented without intervening 

in the link. Next, gain tilt is emulated by setting a wavelength-dependent attenuator at the end of ILA 
1. The two tilt profiles (weak and strong) are shown in  

Figure 3 (b) with its respective gain profile. The anomaly, which is a simple subtraction of the 

anomalous link tomography from the normal state link tomography ( 

Figure 3 (c)), is shown in  

Figure 3 (d-e), showing a good fidelity of the two tested profiles, denotated by the gradual colouring 

of the heat map. Is also possible to see that the strong tilt ( 

Figure 3 (e)) causes a strong cascade effect in ILAs 2 and 3, as these amplifiers can no longer 

maintain a constant output power. Again, these results indicate that the link tomography can detect 

EDFA failures without additional testing equipment or access to the infrastructure information. 

 

 
 

Figure 3: For a wavelength-dependent attenuator, (a) estimated gain spectrum of ILA 1, (b) Gain spectra of ILA 1 with and without 

emulated gain tilts, (c) Anomaly detection scheme, Anomaly indicator of (d) weak and (e) strong tilt. 
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3. C+L multi-channel transmission link tomography experimental setup, description 

of denoising and results 

 

For the multi-channel transmission setup presented in Figure 4, the WDM comb transmission 

channels are generated by shaping amplified spontaneous emission noise through wavelength 

selective switches (WSS) for each band (C and L), separately. After the generation, the channels 

pass by the C- and L-band Booster EDFAs and are subsequently multiplexed by a 3 dB coupler. This 

comb is then combined with the channel under test (CUT), generated the same way as described in 

Section 2. The comb consists of 20 channels in the C-band and 22 channels in the L-band, with a 

spacing of 150 GHz, a flat launch power profile of 14.9 dBm in total and a gap between each band of 

around 1.645 THz. At the receiver, the WDM comb is boosted by a C+L EDFA before passing through 

a bandpass filter (BPF), which selects the CUT. Before filtering, the signal is also used for signal-to-

noise ratio measurements in an OSA. Finally, the signal is amplified one last time before mixing with 

the local oscillator (LO) in the coherent receiver. 

 

 
Figure 4: Experimental testbed used in the multi-channel transmission link tomography. 

 
 

The first result shown in Figure 5 (a) is the estimated spectral power profile based on the link 

tomography applied for WDM transmission. It is worth mentioning that, for this case, unlike the case 

presented in Section 2, the input power experienced by each individual amplifier may vary. We also 

show in Figure 5 (b-e) the estimated power peaks at the input of the OLS and output of ILA’s 1, 2, 

and 3. The gain tilt raised, mainly by WDM transmission and amplifiers characteristics, is successfully 

captured by the link tomography, as shown by the red makers in these plots. 

 

 
Figure 5: (a) Link tomography obtained in Experiment II (multi-channel analysis). Power peak curves obtained from the link 

tomography obtained at (b) input of the OLS, and output of the ILA (c) 1, (d) 2 and (e) 3 link. 
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Even with the link tomography being able to capture the tilt of this transmission, other factors, such 

as the channel-loading configurations or variations in channel input power [10], can worsen 

amplification tilts. To emulate this behaviour, a VOA with 6 dB of flat loss is added at the input of ILA 

2. The anomaly scheme used for this case is the same as the one presented in Section 2 and shown 

in Figure 6 (a). By the heatmap presented in Figure 6 (b), is possible to see two anomalies. The first 

is the emulated tilt raised by the VOA at the ILA 2 input at around 140 km. The second observed 

anomaly is the cascade effect raised in the ILA 3, a consequence of the difference of input power 

generated by the VOA. These results attest that link tomography can be beneficial in determining 

wavelength-dependent disruptions in optical links. 

 

 
Figure 6: (a) Anomaly detection scheme based on subtraction. (b) Estimated anomaly heatmap for VOA with 6 dB of spectrally flat loss 

applied at the input of ILA 2. 

 

 

Even with the subtraction detection scheme showing good results, a more location accurate scheme 
is desirable, in order to cope with the non-uniformity and sparsity of the signatures which can hinder 
the identification of the problem. One alternative to increase the location accuracy of detection 
schemes in link tomography is the insertion of a numerical differentiation with respect to the spatial 
domain [11], presented in  

Figure 7 (a). In [9] is proposed the usage of wavelet denoising of the link tomography [10] and shown 

in  

Figure 7 (b). This scheme is added between the subtraction and the numerical differentiation and is 

composed by a discrete wavelet transformation (DWT), followed by soft-threshold procedure and an 

inverse DWT (iDWT) before been forward to the numerical differentiation. The wavelet denoising must 

be able to remove the undesired noise within the signal. 

 

 

 
 

Figure 7: Anomaly detection schemes based on (a) subtraction plus numerical differentiation, and (b) wavelet denoising. 
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In order to evaluate the performance of these detection schemes, we emulate two anomalies in ILA’s 
2 and 3, installing a VOA at the output of these amplifiers with 3 dB of flat attenuation. This type of 
anomaly could correspond to excessive loss from amplifier-to-fiber connectors or depletion of 
amplifier’s pump current. The heatmaps presented in  

Figure 8 (a-b) for failures in ILA’s 2 and 3, respectively, shown that applying only the numerical 

differentiation to the detection scheme can generate a rough indication of the failures, but clearly 
leaves a non-uniform and noise pattern in the heatmap. Alternatively, applying the wavelet denoising 
to the detection scheme and presented in  

Figure 8 (c-d) shows that this method increases the failure uniformity on the heatmap, also reducing 

its noise. Moreover, as presented in  

Figure 8 (e), we can see that wavelet denoising is also able to present a more accurate anomaly 

location. The  

Figure 8 (e) shows for a fixed CUT wavelength (1549 nm) the subtraction plus numerical differentiation 

and the proposed wavelet denoising. We can see that by using wavelength denoising, the detection 

scheme was able to improve the accuracy of the fault detection by 3 km. Furthermore, wavelet 

denoising delivers a smoother profile, which provides an easier way to detect the real anomaly peak. 

 

 
 

Figure 8: Estimated anomaly heatmaps for subtraction plus numerical differentiation in (a) ILA 2 and (b) ILA 3, and for wavelet 

denoising in (c) ILA 2 and (d) ILA 3. (e) Comparison of anomaly detection curve in EDFA 2 in wavelength 1549 nm using subtraction 

plus numerical differentiation and wavelet denoising.  

 

The results presented in this section suggest that DSP link tomography can be used to accurately 

estimate the spectral power profile, and amplifier gain and failures for WDM multi-channel 

transmission without directly using measurement devices. It is also shown that the usage of wavelet 

denoising in anomaly detection schemes brings advantages in terms of more uniform, less noisy and 

more accurate results. 
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4. Conclusions 

 

This work experimentally demonstrates a receiver-DSP scheme, which can extract the distance-wide 

and wavelength-dependent channel power evolution without any testing equipment or access to 

infrastructure information. For single-channel transmission, an estimation for the gain profile of C+L 

EDFAs was presented, achieving a maximum mean error of 0.6 dB. Moreover, a good level of fidelity 

in visualizing soft-failures such as amplifiers gain tilts is shown. For WDM multi-channel transmission, 

the link tomography is also able to provide an accurate power profile evolution, as well as amplifier 

gains and failures. Moreover, the proposed anomaly detection scheme using wavelet denoising 

delivered a more uniform and less noisy readings of anomaly signatures, improved the location of the 

fault by 3 km and delivers a smoother anomaly detection curve, providing an easier way to detect the 

anomalies. These results demonstrate that this approach can be used as a tool for fault detection in 

MBT systems. 
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