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EXECUTIVE SUMMARY 

 
The present scientific deliverable is a part of the Work Package 2 “Digital signal processing and 

system modelling” of the ETN project WON “Wideband Optical Network”, funded under the Horizon 

2020 Marie Sklodowska-Curie scheme Grant Agreement 814276. 

 

The deliverable D2.1 describes the concepts of DSP algorithms to estimate and compensate for the 

impairments of prototyped components related to fibre propagation when transmitting over S- to L-

band. The discussion carried out in this report is described as follows. First, the concepts of digital 

pre-distortion of opto electronic devices are explained and the requirements for its use in wideband 

operation are consequently reviewed. Then, this report introduces a novel nonlinear system 

identification scheme based on Bayesian optimization, which is used to characterize a standard C-

band optical transmitter. It is shown that this scheme can reduce the convergence time by 46% to 

characterize black-box systems based on Volterra series with respect to other traditional approaches. 

Besides, when applied to different setup configuration schemes (e.g., different symbol rate, different 

amplifier gains) this new method is able to derive adaptable filter designs that can account for the 

strength of the imposed nonlinear distortions. Finally, the results of an experimental evaluation are 

exposed where this proposed nonlinear system identification technique is utilized to generate Volterra 

and memory polynomial pre-distortion filters in the S-, C- and L-band (approximately 120 nm). It is 

shown that the proposed solution outperforms standard pre-distortion methods such as linear pre-

distortion and nonlinear pre-distortion based on a grid-search heuristic over 120 nm. 
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1. OVERVIEW ON DIGITAL PRE-DISTORTION FOR OPTO AND/OR ELECTRONIC 

DEVICES   
 
Wideband (WB) optical systems have shown to be a promising solution to cope with the ever-growing 

increase in network traffic by efficiently utilizing the spectral resources of deployed optical fiber 

infrastructure. In WB systems, the main objective is to extend the wavelength division multiplexing 

(WDM) transmission window beyond the typical C+L-band (~5-10 THz) through the utilization of other 

optical amplification bands (e.g., O-, E- and S-band), which leads to an additional 44 THz of available 

transmission bandwidth in single-mode fibers. The realization of WB-based systems requires new 

devices, such as modulators and amplifiers, which cover broader optical bandwidths in comparison 

to the conventional C+L-band technology. However, despite recent advances, the technological 

immaturity and the associated infrastructure upgrade costs make this approach unfit for their short-

term commercial deployment. Another alternative is to optimize standard C-band technologies for out-

of-band use via the utilization of sophisticated digital signal processing (DSP) tools permitting the 

efficient correction of distortions that arise from transmitters in S/L-band operation [3]. In this regard, 

one promising solution is the use of digital pre-distortion (DPD) schemes [4], which is thoroughly 

discussed in the course of this report.  

 

1.1 Volterra-based DPD 
 
In the most general sense, DPD consists of building a nonlinear model that can be used to synthesize 
a DPD filter, in turn, employed to compensate for the transmitter-induced distortions. Conventionally, 
an optical transmitter consists of digital-to-analog converters (DACs) followed by a quad set of driver 
amplifiers (DAs) and a dual-polarization (DP) in-phase/quadrature (IQ) modulator. Its output is a 
continuous-time waveform that when represented in its discrete form, i.e., 𝑟[𝑛], can be modelled with 

respect to the discrete input sequence (𝑠[𝑛]) via a truncated, time-invariant Volterra series [5]. 
Generally, Volterra-based DPD of optical transmitters is defined in two major stages:  
 

1) System Identification (SI) – A Volterra series is used to build a model 𝑅 of the system under 

test (SUT) based on measurements of the input waveform 𝑠 and output waveform 𝑟. The 

mathematical relation between the 𝑛-th sample of the output (𝑟[𝑛]) and input (𝑠[𝑛]) waveform 

is described by Equation 1, where 𝜏𝑝  is an arbitrary delay used for non-causal filtering 

realizations, ℎ𝑝[𝑐1, … , 𝑐𝑝] is the 𝑝-th order Volterra kernel coefficients and 𝑚𝑝 is the 

corresponding 𝑝-th order memory length. When performing the SI, ℎ𝑝 can be estimated via 

adaptive algorithms (e.g., least-squares estimation [6]), where the kernel coefficients are 

obtained such to optimally fit the relation between 𝑟 and 𝑠 (Equation 1). Once the estimation 

of the kernel coefficients (ℎ𝑝, ∀ 𝑝 𝜖 {1, . . , 𝑃}) is complete, an emulated output (𝑟′) can be 

generated by applying the exciting signal (𝑠) to the obtained Volterra model 𝑅. In ideal 

conditions, 𝑟 = 𝑟′. Figure 1(a) summarizes with a block diagram the logic implemented in the 

SI. 

 

𝑟[𝑛] =  ℎ0 + ∑ ∑ …

𝑚1−1

𝑐1=0

∑ ℎ𝑝[𝑐1, … , 𝑐𝑝]

𝑚𝑝−1

𝑐𝑝=𝑐𝑝−1

× ∏ 𝑠[𝑛 − 𝑐𝑖 − 𝜏𝑝]

𝑝

𝑖=1

𝑃

𝑝=1

 (1) 

 

 

2) Signal Pre-Distortion – An inverse model 𝑆 of the SUT is synthesized and operates on 𝑠 to 

generate a pre-distorted signal �̂�. When �̂� is applied to the SUT, the output waveform is 𝑠′, 

which in ideal conditions, 𝑠′ = 𝑠 (Figure 1(b)). To generate the inverse model 𝑆, the indirect 
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learning architecture (ILA) is often utilized [7]. The two major benefits of the ILA are the fact 

that the derived pre-distortion filter 𝑆 is applicable to arbitrary input signals and that the ILA 

does not rely on a pre-defined architecture of the distorting system 𝑅. In most practical cases, 

the inverse model 𝑆 can be expressed as a truncated, time-invariant Volterra series. However, 

the design of Volterra-based DPD filters suffers from scalability issues, since the number of 

computed kernel coefficients grows exponentially with the length of the memory effects. One 

possible solution is to employ the so-called memory polynomial (MP) architecture for the 

inverse model 𝑆. MPs represent a very compact subset of the Volterra series and 

mathematically correspond to rewriting Equation 1, such that, ℎ𝑝[𝑐1, … , 𝑐𝑝] = 0, ∀ 𝑐1 ≠ ⋯ ≠ 𝑐𝑝, 

which in simple words is equivalent to only considering the main diagonal of the 𝑝-th order 

Volterra operator ℎ𝑝. 

 

 
After this brief introduction to the concepts concerning DPD of optical transmitters, we highlight in the 
following section the necessary requirements to adapt traditional DPD approaches for WB systems.   
 

2. REQUIREMENTS FOR DPD IN WB SYSTEMS 
 
One of the key facilitators to the design of WB systems is the capability to generate mechanisms that, 

by incorporating cognitive actions, can perceive current conditions, plan, decide, and act to optimize 

system performance. In simple words, with the expanded utilization of the telecom spectrum (e.g., 

with the addition of the S- and L-band), communication systems need to adapt their operation to the 

physical specificities imposed by each optical band/wavelength in an autonomous fashion, i.e., 

without (or with minimal) human intervention. In Volterra-based DPD, the memory vector (𝐦 =

[𝑚1, … , 𝑚𝑝, … , 𝑚𝑃]) that defines the architecture of the model 𝑆 (Figure 2 shows ℎ1, ℎ2 and ℎ3 for 𝐦 =

 [39, 5, 7, 3, 1]) is an example of a parameter that can adapt the operation of the DPD scheme to the 

specific transmission conditions and functions as a good indicator of the strength of distortions of the 

modelled system. Traditionally, the tuning of 𝐦 is empirically performed via manual configuration, or 

heuristic procedures inspired by grid-search [8], which are computationally expensive and, hence, 

inappropriate for cognitive applications.  

 
Figure 1: Block diagram of the: (a) Volterra-based SI for an optical transmitter, (b) signal pre-distortion. 
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Given that the use of standard C-band technologies for out-of-band operation is expected to be a 

short-term alternative for the deployment of WB systems, one needs to think of efficient DPD 

strategies to adapt 𝐦 to the specific impairments beyond the C-band (e.g., S- and L-band).  This leads 

to three fundamental requirements for the development of DPD schemes for WB systems. 

 

1) Time-efficiency – Given the dynamism of optical network operations and heterogeneity of the 

transmission parameters (e.g., modulation formats, symbol rates) deployed over multiple 

wavelengths, there is need for time-efficient tools that can quickly adapt 𝐦 according to 

transmission conditions. Therefore, efficient SI must be carried out to accelerate the 

adaptation of the DPD scheme, thus avoiding latency in the network.   

2) Adaptability – The architecture of the modelled system, embodied in 𝐦, must take into account 

the wavelength dependency of the transmitter distortions. This means that for each 

wavelength, a specific model 𝑅 must be obtained and consequently used to derive a specific 

inverse model 𝑆 (Figure1(b)) that mitigates the nonlinear distortions.  

3) Performance – The adaptation of 𝐦 in the DPD scheme deployed in WB systems must 

demonstrate a reliable performance improvement in comparison to traditional approaches, in 

order to justify its use. Additionally, it is also desired that a reduced complexity is achieved, 

which also relaxes the criteria in terms of computational processing.   

Given the aforementioned requirements for the design of DPD schemes for WB systems, we now 

introduce how the use of a machine learning (ML) approach can help us fulfil these important criteria. 

 

3. BAYESIAN OPTIMIZATION FOR DPD  
 
Machine learning (ML) has been claimed as a fundamental building block for the future of optical 

networks because its algorithms can learn from data, identify patterns and make decisions with 

minimal human intervention. More importantly, ML-based algorithms have shown great compatibility 

to solve standard optical communication problems, while reducing complexity of traditional 

approaches [9]. In this regard, we envision strong similarities between the optimization of the memory 

vector of a Volterra filter for DPD of optical transmitters and a design problem often dealt within ML 

applications, so-called hyperparameter tuning (HT) [10]. 

 

 
Figure 2:Normalized (a) first (ℎ1), (b) second (ℎ2), and (c) third (ℎ3) order Volterra kernel coefficients of a 5th-order 

synthetic filter for 𝐦 =  [39, 5, 7, 3, 1]. 
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3.1 The HT problem  

 
For decades, black-box models have attracted much attention in both academia and industry due to 

their efficiency on characterizing complex nonlinear systems. Nevertheless, an important challenge 

limiting the performance of these models is their intrinsic dependence on the selection of 

hyperparameters, i.e., any model parameter that can be set beforehand to control learning algorithms. 

Hyperparameters affect the speed and accuracy of the learning process of black-box models and, in 

contrast with conventional model parameters, hyperparameters cannot be easily estimated from the 

dataset. 

 
As discussed in sub-section 1.1, in the SI, which is a black-box process, the least-squares algorithm 

is used to estimate a Volterra filter that optimally fits the input signal (𝑠) to the SUT measured output 

(𝑟). After that, an emulated SUT response (𝑟’) can be obtained by applying the resulting Volterra filter 

to 𝑠. The similarity between 𝑟’ and 𝑟 heavily relies on 𝐦, which is considered a hyperparameter 

because it needs to be set beforehand to model the Volterra filter in which the 𝑝-th order kernel 

coefficients ℎ𝑝 are estimated. However, the lack of analytical formulas to calculate an optimal value 

for 𝐦 and the restricted options of methods (e.g., manual or exhaustive search) opens the opportunity 

for the application of more sophisticated optimization techniques. One of these techniques is the 

Bayesian optimization (BO), which has its role in the context of DPD described in the following sub-

sections 

 

3.2 BO: a brief description  

 
Given a black-box model that characterizes a SUT, in which a given arbitrary input 𝑠 yields a response 

𝑟, then the model accuracy can be evaluated through an objective function 𝑓. A hyperparameter entry, 

represented by a scalar (or vector) input 𝜃, determines this evaluation, such that 𝑓 =  𝑓(𝜃, 𝑠, 𝑟), which 

for simplicity can be written as 𝑓 =  𝑓(𝜃), 𝑓 ∶  Θ →  ℝ. In order to estimate the optimal model 

accuracy, 𝑓 must be subject to an optimization process with respect to 𝜃. However, in most cases, 

this optimization of 𝑓 is bounded by two important restrictions, they are:  

 
1) Computational complexity – The number of evaluations performed on 𝑓 is limited, 

typically in the range of a few hundreds. This condition frequently arises because each 

evaluation takes a substantial amount of time.  

2) Non-differentiability – Typically, first- and second-order derivatives of 𝑓 with respect to 

𝜃, i.e., 𝑓′(𝜃) and 𝑓′′(𝜃), are not obtainable, thus, preventing the application of methods 

like gradient descent, Newton’s method, or quasi-Newton methods. 

 
One of the fundamental ideas of BO is the capability to iteratively create a surrogate model  

𝑓∗  =  𝑝(𝑓|𝐷) that estimates the value of the objective function 𝑓 for an arbitrary input 𝜃, i.e., 𝑓(𝜃), 

conditioned on a limited sub-set of 𝑛-observed data points (𝒟 =  {𝑓(𝜃1), 𝑓(𝜃2), . . . , 𝑓(𝜃𝑛)}). To build 

𝑓∗, the BO algorithm models 𝑝(𝑓|𝐷) as a Gaussian Processes (GP) which permits to represent the 

posterior distribution 𝑝(𝑓|𝐷) by the normal distribution 𝒩(𝜇, 𝜎2), where [11]:  

 

𝜇(𝜃) =  𝐤𝑇(𝜃)𝐊−1𝐳 (2) 

𝜎2(𝜃) =  𝑘(𝜃, 𝜃) − 𝐤𝑇(𝜃)𝐊−1𝐤(𝜃) (3) 
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Equations 2 and 3 are fully determined by the kernel covariance function 𝑘: Θ ×  Θ →  ℝ, the 𝑛-by-1 

vector 𝐳 and the 𝑛-by-𝑛 Gram matrix 𝐊. The kernel covariance function 𝑘(𝜃, 𝜃′) is built by applying a 

covariance function between two arbitrary entries 𝜃, 𝜃′ ∈  Θ, i.e., 𝑘 (𝜃, 𝜃′)  =  𝐶𝑜𝑣(𝜃, 𝜃′), consequently 

yielding the 1-by-𝑛 vector 𝐤𝑇(𝜃), where [𝐤(𝜃)]𝑢,1  =  𝐶𝑜𝑣(𝜃, 𝜃𝑢) for 𝑢 ∈  {1, . . . , 𝑛}, and the scalar 

𝑘 (𝜃, 𝜃)  =  𝐶𝑜𝑣(𝜃, 𝜃). Finally, the vector 𝐳 and the Gram matrix 𝐊 are respectively defined as  

[𝐳]𝑢,1  =  𝑓(𝜃𝑢) and [𝐊]𝑢,𝑣  =  𝑘(𝜃𝑢, 𝜃𝑣), where 𝑢, 𝑣 ∈  {1, . . . , 𝑛}. 

 

Once the surrogate model 𝑓∗ = 𝒩(𝜇, 𝜎2) is updated, it can be directly used to estimate the global 

optimum of the function 𝑓, which is usually performed with the aid of an analytical acquisition function 

𝑎(𝜃) (e.g., expected improvement [11]). As the number of observed data points in 𝒟 grows, the 

resemblance between 𝑓∗ and 𝑓 increases and the algorithm rapidly learns the location of the global 

optimum of 𝑓 without directly applying any algebraic operation on this function.  

 
Now, we introduce how this concept can be integrated into SI of optical transmitters and used in the 
synthetization of a DPD filter.  
 

3.3 BO for SI of optical transmitters  
 
To incorporate BO into SI, we restructure the conventional SI block diagram in Figure 1(a) to search 

for the 𝐦 that minimizes the identification error 𝑒SI between 𝑟 and 𝑟’ (Figure 3), here quantified by the 

normalized mean squared error (NMSE) (Equation 4). This new scheme is hereafter referenced as 

Bayesian-based SI and was initially introduced in [12]. 

   

 

𝑒SI(𝐦) =  
𝑉𝑎𝑟(𝑟′ − 𝑟)

𝑉𝑎𝑟(𝑟)
 (4) 

 

Since 1 − 𝑒SI(𝐦) is a proper figure of merit (FOM) of the SUT model accuracy, we mathematically 

write the HT problem as: 

 
max

𝐦 ∈ ℳ
[ 1 − 𝑒SI(𝐦)] (5) 

 

 
 

Figure 3: Bayesian-based SI for tuning of the SUT filter design (𝐦). 
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One important boundary condition in this optimization problem is the complexity of the SUT model 𝑆, 

which can be quantified by the total amount of computed filter coefficients. Therefore, we set an upper 

bound to the amount of computed coefficients (𝑀𝐶), thus limiting the space of possible solutions that 

can be searched in the BO. This boundary condition is expressed by the following inequality:  

  

𝑀𝐶 ≥ ∑
(𝑚𝑝 + 𝑝 − 1)!

(𝑚𝑝 − 1)! 𝑝!

𝑃

𝑝=1

 (6) 

 

3.4 Bayesian-based SI for time-efficiency 
 
Before we investigate the application of the Bayesian-based SI in WB scenarios, it is important to 

demonstrate how this approach satisfies the three requirements presented in section 2.  

 
The first requirement, time-efficiency, is assessed by comparing the proposed [13] approach to a 

heuristic memory tap optimization method introduced in [8]. In this scheme, a method was proposed 

to optimize the number of orders and memory taps of the Volterra series and follows the described 

method. First, the heuristic initializes the SI with a single-tap 1st-order Volterra filter, i.e., the least-

squares estimation to obtain ℎ𝑝 is carried out for a memory vector 𝐦 =  [1]. Then, 𝑚1 is unitarily 

incremented until 𝑒SI reaches an error floor. After that, 𝑚1 is fixed and this procedure repeated for 

higher orders (e.g., 𝑚2, 𝑚3,…). The algorithm stops when an optimal 𝑒SI is found after adding new 

orders. Despite providing an accurate estimation, this approximation gives rise to a difficult 

implementation constraint, i.e., the high number of evaluations of 𝑒SI to find 𝐦𝑜𝑝𝑡, which arises from 

the grid-search-like nature of the assumed strategy.  

 
To benchmark Bayesian-based SI [13] with [8], we synthesized a 5th-order Volterra model that 

emulates the response of a SUT and is depicted by Figure 2, for which 𝐦 is known and equal to  

𝐦 =  [39, 5, 7, 3, 1]. Then, a random eight-level pulse-amplitude modulation (PAM-8) training 

sequence (𝑠) with 105 symbols at 1 Sa/symbol is fed to the emulated SUT model to obtain the 

corresponding output signal (𝑟). This pair of waveforms, i.e., 𝑠 and 𝑟, is hence provided to the 

proposed Bayesian-based SI and to the heuristic approach. Then, both techniques are used to blindly 

learn the optimal 𝐦. The SUT model was emulated with VPItoolkitTM DSP Library. For the Bayesian-

based SI, we set a maximum filter complexity of 𝑀𝐶  =  155, which ensures that 𝐦𝑜𝑝𝑡  𝜖 ℳ.  

 
The Wallclock time (elapsed processing time) after each iteration loop for both techniques was then 

used as FOM. According to the results shown in Figure 4, Bayesian-based SI is able to reach the 

minimum identification error 𝑒SI, 46% faster compared to the benchmarked approach. This indicates 

that using BO to identify the optimal memory tap distribution of a Volterra filter brings the advantage 

of reducing the convergence time, contributing to the time-efficiency requirement. 

 

3.5 Bayesian-based SI for adaptable transmission scenarios 
 
The second requirement presented in section 0 concerns the adaptability of the DPD scheme when 

subject to multiple transmission configuration setups. In order to demonstrate how the proposed 

Bayesian-based SI stands out as a promising candidate for adapting the modelling of the SUT, we 

evaluate its performance for two different scenarios, namely, (1) different DA gains and (2) different 

symbol rates.  
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In the both scenarios, we set up an optical back-to-back testbed and carry out an experimental 

validation of the proposed approach. For this analysis, we divided the experimental methodology into 

two main parts, i.e., (1) SI and (2) performance evaluation. In the first part (i.e., SI), a 96 GBd DP-

16QAM “probe” signal was generated using a 215 random bit sequence followed by a root-raised 

cosine (RRC) pulse shaping filter with roll-off factor 0. The 96-GBd symbol rate ensures that the 

identification of the SUT Volterra model covers sufficient frequency components to guarantee that the 

test signals used in the performance evaluation will not be cut off in the frequency domain when 

applied to the inverse model 𝑆. 

 

Then, the four sample sequences for the quadrature components (XI, XQ, YI and YQ) were uploaded 

to a 4-channel 120 GSa/s Keysight arbitrary waveform generator (AWG) with 3-dB bandwidth of 45 

GHz (able to generate signals with frequency components above 45 GHz). The AWG was used to 

drive a 40-GHz optical multi-format transmitter (OMFT) from ID Photonics based on a high-bandwidth 

coherent driver module (HB-CDM). Together, the OMFT and the AWG comprise the SUT. An external 

cavity laser (ECL) at fixed wavelength (1550 nm) was used for the DP-IQ modulator and for the local 

oscillator (LO). Then, the optical signal was transmitted, received and digitized using an optical 

coherent receiver (70 GHz) followed by a 256 GSample/s real-time oscilloscope (RTO) with 110 GHz 

analog bandwidth. At the receiver DSP, Stokes space based polarization demultiplexing, clock 

recovery, resampling, frequency offset correction and carrier phase recovery were performed. The 

received and the transmitted samples of the probe signal quadrature components were finally 

provided to the Bayesian-based SI. At this stage, the Bayesian-based SI was processed for different 

filter complexities 𝑀𝐶  [13]. 

 

In the second stage (performance evaluation), we tested the obtained solutions derived in the SI. This 

means that the kernel coefficients ℎ𝑝 obtained from the Bayesian-based SI were used in the 

synthetization of the model S (realized through ILA). Subsequently, the obtained DPD filter was used 

to pre-distort the test signal that unlike the probe signal was generated with a RRC pulse-shape (roll-

off factor of 0.1), for which a single modulation formats (DP-64QAM) and two symbol rates (64 and 

80 GBd) could be selected. After the transmission and reception of the pre-distorted test signal, the 

bit-error ratio (BER) was measured by counting the errors in 1 million bits per measurement point. 

Further details on the realization of the described experimental assessment can be found in [13].  

 
 

Figure 4: The proposed Bayesian-based SI is benchmarked against the heuristic approach introduced in [8], showing 
a 46% reduction in convergence time. 
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3.5.1 Different amplifier gains 
 
In order to verify that the proposed approach is able to adapt the DPD design according to the system 

configuration, we tested three gain configurations (𝑔1, 𝑔2 and 𝑔3) of the DAs to excite different degrees 

of transmitter nonlinearity. These gain configurations correspond to three levels of nonlinear system 

excitation: weak (𝑔1,), strong (𝑔2,) and highly nonlinear (𝑔3,), such that 𝑔1 < 𝑔2 < 𝑔3. 

 

The performance evaluation was carried out with a test signal configured to DP-64QAM at 64 GBd at 

maximum OSNR (44.9 dB). As can be seen in Figure 5, the filter architecture that results in lowest 

BER for the gain 𝑔1 (indicated by the pink star-like marker) is a 3rd-order Volterra filter  

(𝐦𝑜𝑝𝑡  =  [76, 3, 9], 𝑀𝑐  =  50). When gain 𝑔2 is tested, not only 𝑚1 and 𝑚2 incorporate 4 and 2 more 

taps, respectively, but there is also the inclusion of a 4th order (𝐦𝑜𝑝𝑡  =  [80, 3, 11, 3], 𝑀𝑐  =  400). 

Finally, for the highly nonlinear regime, represented by the gain 𝑔3, the design for lowest BER is a 

5th-order filter (𝐦𝑜𝑝𝑡  =  [200, 11, 15, 1, 3], 𝑀𝑐  =  1000). 

 

3.5.2 Different symbol rates 
 
As previously mentioned, during the SI a probe signal at 96 GBd was used to excite the SUT. This 

enables to synthesize a model 𝑅 that covers sufficient frequency components to ensure that the test 

signals (at 64 and 80 GBd) will not be cut off in the frequency domain when applied to the inverse 

model 𝑆. The downside of such procedure is that the 96 GBd signal also excites transmitter 

nonlinearities at frequencies where the 64 or 80 GBd waveforms have no spectral support. 

Consequently, it is expected that at higher symbol rates the output signal of the SUT will manifest 

stronger distortions. The next logical step is to know whether our proposed scheme can adapt the 

filter design to reflect the necessity of additional or fewer memory taps to model the distortions induced 

in different symbol rate regimes. 

 

 
Figure 5: BER validation (at fixed OSNR = 44.9 dB) for different amplification gains 𝑔1 < 𝑔2 < 𝑔3 as function of the 

filter complexity 𝑀𝐶. It is possible to distinguish an optimum among underfitted and overfitted filter designs. 
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For this test, the SI was performed in a similar way with respect to the analysis presented in sub-

section 0, except for the fact that now a fixed DA gain (𝑔2) was set. In the performance evaluation, 

the test signal was configured to a fixed modulation format (DP-64QAM) while the chosen symbol 

rates were either set to 64 GBd or 80 GBd. 

As depicted in Figure 6, the higher symbol rate regime (80 GBd) requires a filter complexity  
(𝐦𝑜𝑝𝑡  =  [200, 11, 15, 3],  𝑀𝐶  =  1000) 2.5× higher than the 64 GBd case (𝐦𝑜𝑝𝑡  =  [80, 3, 11, 3],

 𝑀𝐶   =  400) to achieve the lowest BER. This demonstrates that the proposed approach can tailor 
specific filter designs for operation in different symbol rates. 
 

4. DPD FOR WB SYSTEMS  
 
At the beginning of this report, we mentioned that one alternative for short-term deployment of WB 

systems is to optimize standard C-band technologies for out-of-band use via the utilization of 

sophisticated digital signal processing (DSP) tools. In order to demonstrate that the proposed DPD 

approach based on BO is a promising enabler for the future of WB transmission, we experimentally 

demonstrate the application of this scheme to identify and mitigate distortions when using a C-band 

transmitter on a 120-nm S+C+L-band (1470 – 1590 nm) optical coherent setup. The experiment is 

described as follows and shown in Figure 7.  

 
The experimental testbed used in this evaluation is shown in Figure 7. The SUT is composed by a 4-

ch 120 GSa/s Keysight AWG, which was used to drive a commercially available C-band OMFT 

comprising a quad-set of DA and a LiNbO3 DP IQ-modulator. Three tunable ECL sources with 

linewidth < 100 kHz were utilized to cover the tested wavelengths in the S-band (1470 – 1520 nm), 

C-band (1530 – 1550 nm) and L-band (1560 – 1590 nm). To deliver a constant input optical power of 

16 dBm to the transmitter, a thulium-doped fiber amplifier (TDFA) and an erbium-doped fiber amplifier 

(EDFA) were jointly used with the S- and L-band ECLs, respectively. Then a 96-GBd DP-16QAM 

signal was generated with a 215 random bit sequence and shaped with a root-raised cosine (RRC) 

pulse filter with roll-off factor 0. The four resulting sample sequences for the quadrature components, 

i.e., XI, XQ, YI and YQ, were uploaded to the AWG, which was used to drive the OMFT. In the 

following sequence, the signal is transmitted back-to-back, received and digitized using an optical 

 
Figure 6: BER validation (at fixed OSNR = 44.9 dB) for different symbol rates (64 and 80 GBd) as function of the filter 

complexity 𝑀𝐶. It is possible to distinguish an optimum among underfitted and overfitted filter designs. 
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coherent receiver followed by a 200 GS/s real-time scope. For the measurements performed in C- 

and L-band, two individual ECLs were used as LOs for intradyne reception, whilst for the S-band, due 

to unavailability of a second S-band ECL, a self-homodyne reception was performed. At the receiver 

DSP, Stokes space based polarization demultiplexing, resampling, frequency offset correction and 

carrier phase recovery were respectively carried out. At last, the demultiplexed and the reference 

samples of the quadrature components were used as inputs for the optimization of 𝐦 of the SUT 

Volterra model and provided to the ILA algorithm. Then, the synthetization of four DPD filter types is 

carried out. To benchmark our approach, we first synthesize a linear and a Volterra DPD filter, where 

the tap distributions are chosen in the following way. First, for the Volterra filter, we follow a similar 

approach to what is proposed in [8], i.e., the taps are incremented until the MSE curve reaches an 

error floor. However, unlike [8], we assumed increments of 100, 2, 2, 1 and 1 taps, for 𝑝 = 1, 2, 3, 5 

and 5, respectively, leading us to 𝐦 =  [500,10,10,5,5]. For the linear case, we simply set 𝐦 =  [500]. 

At last, we synthesize a Volterra and a MP DPD filter using the 𝐦 obtained from the BO (hereafter 

referenced as autonomous tap optimization). With all these four DPD filters, we obtain the pre-

distorted samples using a RRC pulse-shaped (roll-off factor of 0.1) DP-32QAM at the symbol rate of 

64 GBd. Then the signal is transmitted over 40-km SSMF and a noise-loading stage is used to set a 

constant optical signal-to-noise ratio (OSNR). At the receiver, chromatic dispersion compensation 

was added to the DSP chain and BER calculated over 1 million bits.  

 
The first logical step is to investigate how the SUT behaves in out-of-band operation. For that, we 

initially assess the performance of the transmitter when used in the S-band. Figure 8(a) shows the 

BER curves of the transmission experiment at a fixed OSNR of 32.5 dB when the linear (𝐦 =  [500]) 

and Volterra (𝐦 =  [500,10,10,5,5]) DPD filters without autonomous tap optimization are used. As can 

be seen, Volterra-based DPD significantly improves the system-level performance by reducing BER 

in comparison to linear DPD, revealing that nonlinear DPD is key to enable the utilization of standard 

C-band technology in MB regime. Then, the autonomous DPD is performed and the optimized DPD 

Volterra and MP filters are tested. In Figure 8(b) , we see that the optimized DPD filters not only 

improve the Q-factor for the S-band, but also over the entire C/L-band interval. This difference 

becomes even more significant when transmission is performed at lower wavelengths (e.g., 1470 

nm), where the gain by autonomously optimizing the memory tap distribution nears 0.4 dB in Q-factor, 

 
Figure 7: Experimental setup. VOA: variable optical attenuator. 
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as indicated in Figure 8(b). When filter complexity is evaluated in terms of the number of computed 

coefficients (Figure 8(c)), it is also possible to infer that at 1470 nm the autonomous DPD provides 

more compact model designs by reducing the number of computed coefficients of the Volterra and 

MP DPD schemes by 48% and 65%, respectively, when compared to Volterra without autonomous 

tap optimization. 

 
The results shown in Figure 8, thoroughy discussed in [14], demonstrate the impact of an autonomous 

DPD scheme based on BO and that performs adaptation of memory tap distribution for different 

wavelengths. It has been shown that over a total optical bandwidth of 120 nm, the autonomous DPD 

performed with Volterra and memory polynomial filters can improve system-level performance, in 

comparison to a scheme without the autonomous tap optimization. This improvement reaches 0.4 dB 

in Q-factor at 1470 nm at the gain of reducing filter complexity by 48% and 65%, for Volterra and 

memory polynomial DPD filters, respectively. The application of such scheme has revealed the 

importance that self-adaptive DSP algorithms have on improving the use of traditional C-band 

technologies in WB transmission. 

 
  

 
Figure 8: a) BER curves for fixed OSNR = 32.5 dB when linear (m = [500]) and Volterra (m = [500,10,10,5,5]) DPD are 
used in the S-band. (b) Q-factor curves for OSNR = 32.5 dB when Volterra (m = [500,10,10,5,5]) is compared with 
autonomous DPD using Volterra and MP filters. (c) Filter complexity measured in number of computed coefficients for 
DPD schemes of Figure 8(b) at 1470 nm. 
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